
CSE 564: Software Design

Spring 2023

1

CYBER PHYSICAL TRAFFIC CONTROL SYSTEM

Team 5

Kanav Sharma Jacob Jose Sai Varun Vaka

7920-972 1667-713 9368-107

MS in Software

Engineering

MS in Software

Engineering

MS in Computer

Science

School of Computing and Augmented Intelligence

Arizona State University, Tempe, AZ, USA, 85281

Table of Contents

1. Problem Description 4
2. Design 5

2.1. SRC design specifications with descriptions 7
2.2. UML design specifications with descriptions 29

3. Implementation 51
4. Experiments and results 53
5. Frameworks and software tools 62
6. Conclusions 63
7. Appendices 67

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 2/71

 Kanav

Sharma *

Jacob

Jose

Sai Varun

Vaka

Parts Part % Effort % Effort % Effort Points

**

Earned

Points

Problem

description

1 35% 40% 25% 5

SRC design

specifications

with description

1 33% 33% 34% 25

UML design

specifications

with description

1 33.3% 33.3% 33.3% 25

Implementation 2 35% 30% 35% 10

Experiments &

results

1 30% 40% 30% 10

Conclusions*** 1 33% 33% 34% 5

Demonstration 2 33.3% 33.3% 33.3% 10

Presentation 2 33.3% 33.3% 33.3% 10

Code quality 2 40% 20% 40% 5

Report quality 1 30% 20% 50% 5

Total 110

Software Design (CSE 564) Cyber Physical Traffic Control System

3

 Team member contributions

What went well? What could have

been done better as part

of this project?

What were the

learnings?

How was working

with this team?

Kanav

Sharma

(Team

Leader)

The team was

quick with

adapting the

concepts of

Synchronous

Reactive

Components.

Assignments

given during the

course were of

great help to

solidify the

concepts learnt

during the class.

Adopting a

"design first and

code later"

approach shifted

our mindset and

enabled us to

identify potential

software

loopholes early in

the project

lifecycle.

While I found Webster

to be functioning as

intended and providing

adequate green time, I

believe that there may

be more efficient

algorithms available that

could improve

performance.

Additionally, I believe

that we could have been

more proactive in

seeking feedback from

other teams working on

the same project topic.

While we received

feedback from our

professor, exchanging

ideas and suggestions

with other teams could

have been helpful in

identifying potential

improvements and best

practices.

Through my

experience, I

realized that

effective

communication

with the team is

crucial, especially

when dealing with

task dependencies.

I also learned the

importance of

utilizing team

meetings to their

full potential, by

posing questions

that prompt the

entire team to

come to a

consensus on a

solution before

proceeding. This

approach helped

avoid potential

inconsistencies in

our assumptions.

The team was very

collaborative,

responsive and owned

their task well.

Working with this

team was a positive

experience overall.

As the team lead, I

focused on fostering a

collaborative and

communicative

environment, which

helped ensure that

everyone was on the

same page and that

we could work

effectively together. I

found that each team

member brought

unique strengths and

perspectives to the

project, which made

the overall outcome

stronger.

Jacob Jose Even though we

were required to

give the

presentation first,

we coordinated

well to finish the

project on time

and deliver it.

We should have used

third party websites to

make the scenario’s

explanation better with

graphical representation.

Generating test

case scenarios to

understand what

went wrong or

what is right in the

component can

help to design the

application in a

correct manner.

The project involved

multiple team

members with

different skills and

expertise, but we

understood each

other’s perspective.

Effective

collaboration and

teamwork can help to

ensure that everyone's

contributions are

valued, and that the

project is completed

on time.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 4/71

Sai Varun

Vaka

Discussion for

designing the SRC

components like

how variables can

be utilized and

how feedback

loop can be

implemented for

cyber physical

systems.

Multi-threading could

have been implemented

for concurrent execution

of getting the vehicle

data and calculation of

the green time.

Using

synchronous

reactive

components can

help to simplify

the software

design and make it

more efficient.

This approach can

help to reduce the

likelihood of bugs

and errors in the

code and can

make it easier to

maintain and

update the

software over

time.

Working with the

team on this project

was a great

experience overall.

One of the positive

experiences was the

collaborative spirit of

the team. We were all

committed to the

success of the project,

and everyone was

willing to lend their

expertise and support

to each other. For

example, when one of

us got stuck with

designing a light

signal controller

component, we

resolved it by

discussing among

ourselves by

verifying the rounds

of the component.

1. PROBLEM DESCRIPTION

Traffic congestion is a major problem faced by urban areas around the world, leading to increased

travel time, fuel consumption, and greenhouse gas emissions. The traditional traffic control

systems based on fixed timings and simple traffic models are not sufficient to handle the dynamic

traffic flow in modern cities. To address this issue, a traffic signal control cyber physical system

is proposed, which integrates real-time traffic data from multiple sources, such as sensors, cameras,

and GPS devices, to dynamically adjust the traffic signal timings and optimize traffic flow. The

objective of this system is to reduce traffic congestion, travel time, fuel consumption, and

greenhouse gas emissions, while improving overall traffic safety. However, the development of

such a system poses several challenges, such as data collection and processing, algorithm design,

system implementation, and evaluation. This project aims to design, implement, and evaluate a

traffic signal control cyber physical system, which can effectively optimize traffic flow and

improve the overall transportation system in urban areas. Most of today’s road traffic control

systems are currently based on pre-defined time intervals and do not consider real-time changes in

traffic or emergency evacuations. While this approach may be simple and cost-effective, it

inevitably leads to excess congestion due to its inability to adapt to changing traffic patterns.

Software Design (CSE 564) Cyber Physical Traffic Control System

5

PROPOSED SOLUTION

For this project, we propose a cyber physical system (CPS) that utilizes a centralized traffic

controller to make real-time traffic-light-change decisions based on data received by implemented

road sensors. CPS can incorporate various sensors, cameras, and GPS devices to monitor traffic

conditions in real-time. This data can be used to adjust traffic signal timings, optimize traffic flow,

and detect traffic incidents, such as accidents or road closures. CPS can use advanced algorithms

to dynamically adjust the timing of traffic signals based on real-time traffic data. By optimizing

the flow of vehicles through intersections, CPS can reduce congestion and improve travel time.

For this proposal, we will be focusing on road sensors to register/count the number of cars at an

intersection at a given time, and a traffic light controller that will decide the light change based on

the number of cars, velocity of cars and direction of its movement. Additionally, our cyber physical

system will include sensors for receiving communication requests from emergency vehicles to

immediately alter the current traffic signal.

• Type of Sensors: Inductive loop detector.

• Data Collection and processing

• Webster’s Algorithm

2. DESIGN

Assumptions:

• All Vehicles will move in a straight road. No Vehicle will take a left or right turn at the

intersection.

• Vehicles do not break down while moving and will not take a U turn before the

intersection.

• Emergency Vehicles have a special radio frequency transmitter for identification.

Radio frequency sensors will identify emergency vehicles through the transmitter.

• Each lane has an individual sensor and summation of cars calculated by each lane will

be considered as input.

• Only one emergency vehicle can be at the intersection at a time.

• If there is an emergency vehicle at any intersection, our component allocates 20

seconds to it pass, irrespective of green time allocation done by the webster module.

• The North-South bound traffic signal is Green at the initial state & East West bound

traffic signal is Red at the initial state.

Algorithm for traffic-responsive adaptive signal control:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 6/71

• Collect real-time traffic data from sensors at each approach road.

• Calculate the volume and direction of vehicles approaching each intersection.

• Calculate the optimal green time for each road based on the current traffic conditions.

This can be done using Webster’s formula, which takes into account the volume, speed,

and delay of vehicles at each approach.

• Adjust the signal timings based on the calculated green time for each approach road.

• Monitor the traffic flow and adjust the signal timings as necessary based on the real-

time traffic data. For example, if the traffic conditions change and congestion increases,

the green time for the congested approach will be extended to reduce delays.

Glimpse of intersection and sensors:

At intersections, there are corridors running in the north-south and east-west directions.

To determine the net traffic waiting for the traffic lights to turn green, two sensors

(shown as red dotted marks) are placed: one near the intersection to count the vehicles

moving out, and another 200 meters away to count the vehicles moving in. The traffic

controllers use the data from both sensors to make their calculations.

https://www.apsed.in/post/traffic-signal-design-webster-s-formula-for-optimum-cycle-length#:~:text=It%20is%20given%20as%20the,headway%20in%20vehicles%20per%20hour.
https://www.apsed.in/post/traffic-signal-design-webster-s-formula-for-optimum-cycle-length#:~:text=It%20is%20given%20as%20the,headway%20in%20vehicles%20per%20hour.
https://www.apsed.in/post/traffic-signal-design-webster-s-formula-for-optimum-cycle-length#:~:text=It%20is%20given%20as%20the,headway%20in%20vehicles%20per%20hour.

Software Design (CSE 564) Cyber Physical Traffic Control System

7

2.1. SRC design specifications with descriptions

Emergency Vehicle RFID Receiver:

The SRC is intended to function as an emergency vehicle sensor and is not a software component.

RFID transmitters are installed in emergency vehicles, which transmit a unique RFID signal. The

SRC detects the RFID signal and generates an event value (bool) as output.

Below is the {I,O,S,Init,React} for Emergency Vehicle RFID Receiver

• Input I: {vehicleRFID }

 vehicleRFID is of type event(nat).

• OutputO:{flagEmergency}

 flagEmergency is a type of event(bool).

• State variables S: NA

• Init: NA. As there are no state variables, initialization is not required.

• React: Refer SRC components below.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 8/71

Inductive Loop Detector

The SRC is intended to function as an vehicle sensor and is not a software component. An inductive

loop detector is a wire that is installed on the road to detect vehicles. When vehicles pass over

these sensors, it gives an output of type ‘event’.

Below is the {I,O,S,Init,React} for Inductive Loop Detector

• Input I: NA

• OutputO:{vehiclePassed}

 vehiclePassed is a type of event.

• State variables S: NA

• Init= NA. As there are no state variables, initialization is not required.

• React = Refer SRC components below.

Software Design (CSE 564) Cyber Physical Traffic Control System

9

Composite Block diagram

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 10/71

Composite SRC diagram

Below figure represents the composite SRC diagram for the Cyber Physical Traffic

Control System. This SRC consists of the 13 tasks in the task graph.

Task A1:

Read Set: {northInputVehicle, northOutgoingVehicle}

Write Set: {northCounter}

This initial task takes the input from the sensor present at the north road. It stores the

current count of vehicles present at the road in the state variable. Updates the current

number of vehicles present by checking incoming vehicles and outgoing vehicles. It

updates the current number of vehicles present at North to Task A5.

Task A2:

Read Set: {southInputVehicle, southOutgoingVehicle}

Write Set: {southCounter}

This initial task takes the input from the sensor present at the south road. It stores the

current count of vehicles present at the road in the state variable. Updates the current

number of vehicles present by checking incoming vehicles and outgoing vehicles. It

updates the current number of vehicles present at South to Task A5.

Task A3:

Read Set: {eastInputVehicle, eastOutgoingVehicle}

Write Set: {eastCounter}

This initial task takes the input from the sensor present at the east road. It stores the

current count of vehicles present at the road in the state variable. Updates the current

number of vehicles present by checking incoming vehicles and outgoing vehicles. It

updates the current number of vehicles present at East to Task A5.

Task A4:

 Read Set: {westInputVehicle, westOutgoingVehicle}

Write Set: {westCounter}

This initial task takes the input from the sensor present at the west road. It stores the

current count of vehicles present at the road in the state variable. Updates the current

number of vehicles present by checking incoming vehicles and outgoing vehicles. It

updates the current number of vehicles present at West to Task A5.

Software Design (CSE 564) Cyber Physical Traffic Control System

11

Task A5:

Read Set: {changeSignal, LastExecution, northCounter, southCounter, eastCounter,

westCounter}

Write Set: {LastExecution, countPrimaryRoad, direction, countSecondaryRoad}

This task keeps the control of the application by deciding whether to send the output

or not. This task tries to execute only when the output of task A12 sends the event to

this task. If no event input is present it doesn’t execute. Note that other tasks A1, A2,

A3, A4 still execute by keeping the count of the vehicles. Task determines the

direction to be changed to green by considering changeSignal input and by checking

the number of vehicles present at the intersection in all the directions. It updates the

number of vehicles at primary road, secondary road and determined direction.

Task A6:

Read Set: {countPrimaryRoad, countSecondaryRoad, direction, saturationNS,

saturationEW}

Write Set: {criticalFlowNS, criticalFlowEW}

This task accumulates the values required for the calculation of the green time. It

consists of a subpart of the webster algorithm where the values like road dimensions,

number of vehicles traveling from each direction per hour. It determines the values

for the critical flow in both directions to understand the ratio of the vehicles present

with respect to the vehicles traveling per hour.

Task A7:

Read Set: {criticalFlowNS, direction, criticalFlowEW, countPhase, LostTime,

AllRed, L, ya, OCL}

Write Set: {ya, L, OCL, greenTime}

This task calculates the greenTime needed for a particular direction with respect to

the vehicles in all the directions. This takes the consideration of a few variables like

criticalFlow of both the directions, LostTime, AllRed, countPhase etc. and uses

Webster’s formula to get the greenTime for the direction which is going to change.

Task A8:

Read Set: {greenTime }

 Write Set: {greenTimecounter}

This task checks for the event and maintains the value in the state variable

greenTimecounter.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 12/71

Task A9:

Read Set: {second, greenTimecounter }

Write Set: {greenTimecounter}

This task checks for the event second which is a timer for second. It also has a

condition for greenTimecounter being greater than 0, if it is greater than 0 then the

greenTimecounter will be decremented.

Task A10:

Read Set: {greenTimecounter }

Write Set: {changeSignalWithoutEmergency}

This task triggers the event changeSignalWithoutEmergency when the

greenTimecounter equals to 0.

Task A11:

Read Set: {emergency}

Write Set: {emergency, counter, dir, isEmergency}

This task checks for the presence of any emergency vehicle being detected. If it is

detected it updates the values needed to trigger an emergency.

Task A12:

Read Set: {isEmergency, second, counter, changeSignalWithoutEmergency,

direction}

Write Set: {counter, dir, NSgsLatch, EWrsLatch, EWgsLatch, NSrsLatch,

isEmergency, NSysLatch, EWysLatch, changeSignal}

This task checks if there is an emergency and changes the values for the traffic lights

according to the emergency direction received. If there is no emergency vehicle, it

changes the green light for the direction which it received.

Task A13:

Read Set: {northEmergency, southEmergency, eastEmergency, westEmergency }

 Write Set: {emergency}

This task checks for any emergency vehicle being present at the intersection, if there

is an emergency vehicle event string emergency is triggered.

Software Design (CSE 564) Cyber Physical Traffic Control System

13

This task graph follows all required rules:

• The precedence relation between them is Acyclic.

A1 ≺ A2 ≺ A3 ≺ A4 ≺ A13 ≺ A5 ≺ A6 ≺ A7 ≺ A8 ≺ A9 ≺ A10 ≺ A11 ≺ A12

• Output variables {NSgsLatch, EWrsLatch, EWgsLatch, NSrsLatch, NSysLatch,

EWysLatch } belong to write set of only one task A12.

• Compatibility in variable names: There is no name conflict in state variable names of

all the atomic components.

• Disjoint Output Sets: All the output variables of components are disjoint to each

other's output variable set.

• Acyclicity of await dependencies in input-output variables:

o northCounter ≻ northInputVehicle, northOutgoingVehicle,

o southCounter ≻ southInputVehicle, southOutgoingVehicle,

o eastCounter ≻ eastInputVehicle, eastOutgoingVehicle ,

o westCounter ≻ westInputVehicle, westOutgoingVehicle,

o countPrimaryRoad, direction, countSecondaryRoad ≻ changeSignal,

northCounter, southCounter, eastCounter, westCounter

o criticalFlowNS, criticalFlowEW ≻ countPrimaryRoad, countSecondaryRoad,

direction, saturationNS, saturationEW

o greenTime ≻ criticalFlowNS, criticalFlowEW

o hangeSignalWithoutEmergency ≻ greenTime, second,

o NSgsLatch, EWrsLatch, EWgsLatch, NSrsLatch, isEmergency, NSysLatch,

EWysLatch, changeSignal ≻ second, emergency,

changeSignalWithoutEmergency

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 14/71

Software Design (CSE 564) Cyber Physical Traffic Control System

15

Emergency Vehicle Polling:

Emergency Vehicle Polling component takes the input values from Emergency Vehicle RFID

Receiver to detect presence of emergency vehicles. Each input of a component is referred to by

the direction of the sensor from which the component is getting information. All the inputs are of

Boolean event type. If any of the input events occurs, the component will send the output as String

with the value of the direction of the emergency vehicle.

Below is the {I,O,S,Init,React} for Emergency Vehicle Polling:

• Input I: {northEmergency, southEmergency, eastEmergency, westEmergency}

northEmergency, southEmergency, eastEmergency, westEmergency are of

event type boolean.

• Output O: {emergency}, emergency is of event type String.

• State variables S: {}

• Init= {}. As there are no state variables, no initialization is required.

• React: Refer SRC components below.

SRC Component Diagram:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 16/71

SRC Task Graph Diagram:

Vehicle Counter:

The Vehicle Counter component takes the input values from Inductive Loop Detectors that detect

which determine the incoming and outgoing vehicles. Two sensors are placed on the road. One

sensor is placed at the junction starting point of each road and another at a 200m distance on each

road. The component takes the event from Inductive Loop Detectors and maintains the count of

the vehicles present in the distance frame. This is done through maintaining the state variable. It

returns the latched output out with the count of vehicles. There is a Vehicle Counter for each

approaching road.

Below is the {I,O,S,Init,React} for Vehicle Counter Component:

• Input I: {inputVehicle, outgoingVehicle} inputVehicle, outgoingVehicle are of event type.

• Output O: {out}, out is of type int.

Software Design (CSE 564) Cyber Physical Traffic Control System

17

• State variables S: {counter}, counter is of type int.

• Init= {counter=0}

• React: Refer SRC components below.

SRC Component Diagram:

Since there are four sensors installed, one for each direction, we have utilized four vehicle counter

components. These components determine the net vehicle count at the intersection and then

forward that information to the direction SRC for further processing.

SRC Task Graph Diagram:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 18/71

Determine Direction:

The Determine Direction component serves two main purposes. It helps in toggling the signal from

North-South approach road to East-West Approach Road and vice versa in every round. It is also

responsible for determining the traffic or number of vehicles in each approach road which is used

to calculate or determine the approach road to be prioritized for green signal.

In addition, this component accounts for the changeSignal event, which serves as a barrier to

subsequent rounds until the previous green signal phase is completed. The feedback functionality

of a CPS is demonstrated by this component.

Below is the {I,O,S,Init,React} for Determine Direction:

• Input I: {north, south, east, west, changeSignal}

north, south, east, west is of integer type. This input contains the number of vehicles

in each direction’s approach road. changeSignal is a type of event.

Software Design (CSE 564) Cyber Physical Traffic Control System

19

• Output O: {countPrimaryRoad, countSecondaryRoad, direction}. countPrimaryRoad and

countSecondaryRoad are of type event(int) and direction is of type event (String).

• State variables S: {LastExecution}. LastExecution is of String type.

• Init= {LastExecution := “NS”}. We assume that component states initialize with a North-

South approach road having a green signal.

• React = Refer SRC components below.

SRC Component Diagram:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 20/71

SRC Task Graph Diagram:

Critical Flow:

As part of the Webster algorithm process, this component plays a crucial role by providing

essential input required for calculations. The Critical Flow calculation, which is necessary for

determining the optimal green time for an approach road, is performed using the following

formula:

Critical flow ratio at ith phase = observed volume / saturation flow

Below is the {I,O,S,Init,React} for Critical Flow:

• Input I: {countPrimaryRoad, countSecondaryRoad, direction, saturationNS,

saturationEW} saturationNS & saturationEW are constants provided externally to the

components and are of type integer. This is unique for each intersection. The directions

are of event (String) & countPrimaryRoad and countSecondaryRoad are of type

event(int).

Software Design (CSE 564) Cyber Physical Traffic Control System

21

• Output O: {criticalFlowNS, criticalFlowEW}. criticalFlowNS and criticalFlowEW are

of type event(real). As the calculation includes division, it's best to have a real data type

for accurate calculations.

• State variables S: {}

• Init= {}. As there are no state variables, initialization is not required.

• React = Refer SRC components below.

SRC Component Diagram:

SRC Task Graph Diagram:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 22/71

Webster’s Algorithm:

The Webster’s Algorithm component implements webster to calculate rational approach for

designing traffic signals. It is simple and is based on the formulae given by Webster. It is a

calculation needed to determine the optimum green time for an approach road and it’s given by

below formula:

Ga = (ya/y) * (Co - L)

● ya - critical flow ratio for road 'a'

● y - summation of all critical flow ratio

● Co - Optimum cycle length

● L - lost time including all red time

Assumption:

● LostTime at a phase is assumed to be 2 seconds.

● All Red time is assumed to be 12 seconds.

● Phase Count is assumed to be 2.

Software Design (CSE 564) Cyber Physical Traffic Control System

23

Below is the I,O,S,Init,React} for Webster Component:

● Input I: {criticalFlowNS, direction, criticalFlowEW}

direction is of event type String, criticalFlowNS, criticalFlowEW are of event

type real.

● Output O: {greenTime}, greenTime is of event type int.

● State variables S: {LostTime, AllRed, countPhase, OCL, ya}, LostTime,

AllRed, countPhase is of type int, OCL, ya is of type real.

● Init= {LostTime=2, AllRed=12, countPhase=2, OCL=0, ya=0}

● React = Refer SRC components below.

SRC Component Diagram:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 24/71

SRC Task Graph Diagram:

Data Processing Controller:

The Data Processing Controller component takes the input value greenTime which indicates the

number of seconds for the signal to be kept green, and ‘second’ input which acts as the timer for

seconds. When a greenTime event occurs, the value is assigned to the state variable. The state

variable counter is decreased each time when the event second occurs acting as a timer. It sends

the output event changeSignal whenever the counter becomes 0 by indicating that the timer has

been completed for the lane.

Below is the {I,O,S,Init,React} for Data Processing Component:

• Input I: {second, greenTime}

second is of type event, greenTime is of event type real.

• Output O: {changeSignal}, changeSignal is of event type.

• State variables S: {counter}, counter is of type int.

• Init= {counter=0}

• React: Refer SRC components below.

Software Design (CSE 564) Cyber Physical Traffic Control System

25

SRC Component Diagram:

SRC Task Graph Diagram:

Several modifications were made to integrate this component into the composite SRC. Since the

"counter" state variable was already assigned as a keyword in another task, we had to rename it to

"greenTimeCounter." This adjustment preserves the cohesion necessary in the composite task

graph and ensures that the state variables remain in separate sets (disjoint set property), as required.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 26/71

Light Signal Controller:

The Light Signal Controller component is responsible for toggling traffic light signals based on

calculation of optimum green time and emergency vehicle arrival event. If there is an emergency

vehicle on any of the approach roads, the green signal for that approach will be on for 20 seconds.

At the same time a red signal will be on for another approach road. We have allocated 20 seconds

to pass an emergency vehicle through an intersection.

If there is no emergency vehicle, it will check the normal traffic toggle based on optimum green

time calculations from the Data Processing Controller component above.

Below is the {I,O,S,Init,React} for Light Signal Controller:

• Input I: {second, changeSignal, direction, emergency}

Second, changeSignal, direction, emergency is of event type.

• Output O: {NSGreenSignal, NSYellowSignal, NSRedSignal, EWGreenSignal,

EWYellowSignal, EWRedSignal}. All the outputs are boolean type and are latched to state

variables.

• State variables S: {isEmergency, counter, dir, NSgsLatch, NSysLatch, NSrsLatch,

EWgsLatch, EWrsLatch, EWysLatch}. NSgsLatch, NSysLatch, NSrsLatch, EWgsLatch,

EWrsLatch, EWysLatch & isEmergency variable are of type boolean. counter is of type

integer and dir shows the direction of the flow and is String in type.

• Init= {isEmergency: = 0, int counter:= 0, bool NSgsLatch:= False, bool NSrsLatch:= False,

bool NSysLatch:= False, String dir := "", bool EWgsLatch:= False, bool EWrsLatch:=

False, bool EWysLatch:= False}

Software Design (CSE 564) Cyber Physical Traffic Control System

27

• React = Refer SRC components below.

SRC Component Diagram:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 28/71

SRC Task Graph Diagram:

Components are divided into two task graphs with one handling the emergency and

toggling the emergency flag and initiating the counter. Another task A12 is responsible for

toggling the light signals for duration of time decided by previous webster algorithm or 20

seconds if its an emergency vehicle.

Software Design (CSE 564) Cyber Physical Traffic Control System

29

2.2. UML design specifications with descriptions

It provides UML design specifications including class diagrams with descriptions describing

design choices and tradeoffs.

The UML diagram includes several classes that are integral to the traffic control system.

• The Application class serves as the main class for the system, while the Constants class

provides a central location for storing important system constants.

• The CriticalFlow class is responsible for calculating the critical flow for each approach

road, which is necessary for determining the optimum green time for each signal phase.

• The DataProcessingController class acts as a mediator between the different system

components and handles data processing tasks. The DetermineDirection class

determines the direction of each vehicle, while the EmergencyVehiclePolling class

polls for signals from emergency vehicles.

• The InputData class handles input data from various sensors and sources, while the

LightSignalController class controls the traffic lights at the intersection.

• The Node class represents each intersection node, while the ParseData class parses data

from various sources.

• The system also includes classes for vehicle counting, including VehicleCounterEast,

VehicleCounterNorth, VehicleCounterSouth, and VehicleCounterWest, which count

vehicles for each approach road. Finally, the Webster class implements the Webster

algorithm for determining the optimum green time for each signal phase.

Together, these classes form a comprehensive traffic control system capable of handling various

traffic scenarios.

Each class is explained in detail further in the report.

Relationships

Most of the classes in our design exhibit an aggregation relationship, whereby they are one or more

instances of another class. This type of relationship is characterized as a part-whole relationship,

where the part class forms an integral component of the whole class. Although instances of the

part class can exist independently of the whole class, their life cycle is closely intertwined with

that of the whole class. As a result, the diamond shape on the association line at the whole class

end is frequently used to represent this type of relationship in our classes.

Multiplicity

• The Application class has a one-to-many multiplicity relationship with instances of the

InputData class, which serves to illustrate the round behavior. Each instance of

InputData corresponds to a single round and contains all of the necessary data for

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 30/71

processing, such as the number of vehicles from each direction, emergency vehicle

data, and constant values used to calculate green time.

• All other classes are having one to one multiplicity.

Classes & Interfaces

Our UML class diagram consists of 15 classes and 1 interface.

Software Design (CSE 564) Cyber Physical Traffic Control System

31

Comprehensive UML:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 32/71

Reading Vehicle Data from Sensors:

The given class diagram is a subset that focuses on the feature of retrieving vehicle data from

sensors. To achieve this, the data is obtained from a text file. The process involves invoking the

"read" function from the Application class, retrieving the file from the resource folder, and parsing

it into a format that can be easily read by the Application class.

Software Design (CSE 564) Cyber Physical Traffic Control System

33

InputData.txt

The following is the input data file that the Application class reads. It contains multiple lines, with

each line representing data for a single round. Each line is composed of the following elements:

Sample inputData:

The Application class and the ParseData class have an aggregate relationship, where the latter

fetches data from the inputData.txt file and creates a list of inputData objects. These objects

correspond to the rows in the inputData.txt file.

The Facade Design Pattern was utilized to establish a single point of contact (i.e., the Application)

for making method calls to various parts of the program.

Below is the detailed explanation of class, its attributes, and methods:

 Class definition

Name Description

Application The Application class serves as the entry point for the program and is

responsible for capturing the input data, which represents the data for a

single round. This data is subsequently passed to multiple instances of

other classes for processing, which involve determining the direction and

green time for each direction.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 34/71

ParseData The class in question is a utility class designed to parse the data retrieved

from the inputData.txt file and convert it into a format that can be

accepted by the inputData.java entity.

InputData The InputData class serves as an entity class for the input data. It is

composed of fields and variables that correspond to all of the inputs

required by the application.

 Attribute definitions (Application Class)

Name Description

lastNorthVehicleCount The attribute in question is of the Integer data type and is declared

as private. It is used for capturing the count of vehicles traveling

from the North direction. Upon initialization, the attribute is set to

0 at the beginning.

lastSouthVehicleCount The attribute in question is of the Integer data type and is declared

as private. It is used for capturing the count of vehicles traveling

from the South direction. Upon initialization, the attribute is set to

0 at the beginning.

lastEastVehicleCount The attribute in question is of the Integer data type and is declared

as private. It is used for capturing the count of vehicles traveling

from the East direction. Upon initialization, the attribute is set to 0

at the beginning.

lastWestVehicleCount The attribute in question is of the Integer data type and is declared

as private. It is used for capturing the count of vehicles traveling

from the West direction. Upon initialization, the attribute is set to 0

at the beginning.

Software Design (CSE 564) Cyber Physical Traffic Control System

35

lastExecution The attribute in question is of the String data type and is used to

determine the direction that was processed and given green time in

the previous execution. This information is utilized to determine

the direction to which green time should be allocated in the current

round. The attribute is initialized to "NS" since the assumption is

made that the North-South direction will have green time allocated

initially.

changeSignal The attribute in question is of the boolean data type and is used to

hold on a round until the green time for the previous round is fully

executed. It is declared as private and is initialized to true during

the initialization time.

roundCount The variable in question is a utility variable used to hold the count

of rounds that have been executed so far. Its purpose within the

program is to facilitate printing to the console, which is utilized in

experiments and demos. It is initialized to 0 at the start.

 Attribute definitions (ParseData Class)

Parse Data does not have any attributes.

 Attribute definitions (InputData Class)

isNorthEmergency The attribute in is of the boolean data type and is used to capture

emergency Vehicles from North direction. It is declared as private

and is initialized to false.

isSouthEmergency The attribute in is of the boolean data type and is used to capture

emergency Vehicles from South direction. It is declared as private

and is initialized to false.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 36/71

isEastEmergency The attribute in is of the boolean data type and is used to capture

emergency Vehicles from East direction. It is declared as private

and is initialized to false.

isWestEmergency The attribute in is of the boolean data type and is used to capture

emergency Vehicles from West direction. It is declared as private

and is initialized tofalse.

northIncomingVehicle The attribute in is of the integer data type and is used to capture

incoming vehicles from the north. It is declared as private and is

initialized to 0.

northOutgoingVehicle The attribute in is of the integer data type and is used to capture

outgoing vehicles from north. It is declared as private and is

initialized to 0.

southIncomingVehicle The attribute in is of the integer data type and is used to capture

incoming vehicles from the south. It is declared as private and is

initialized to 0.

southOutgoingVehicle The attribute in is of the integer data type and is used to capture

outgoing vehicles from the south. It is declared as private and is

initialized to 0.

Software Design (CSE 564) Cyber Physical Traffic Control System

37

eastIncomingVehicle The attribute in is of the integer data type and is used to capture

incoming vehicles from the east. It is declared as private and is

initialized to 0.

eastOutgoingVehicle The attribute in is of the integer data type and is used to capture

outgoing vehicles from the east. It is declared as private and is

initialized to 0.

westIncomingVehicle The attribute in is of the integer data type and is used to capture

incoming vehicles from west. It is declared as private and is

initialized to 0.

westOutgoingVehicle The attribute in is of the integer data type and is used to capture

outgoing vehicles from west. It is declared as private and is

initialized to 0.

saturationNS The attribute in is of the integer data type and is used to capture

saturation value of North South Road. This value will be used in

Webster calculations.It is declared as private and is initialized to 0.

saturationEW The attribute in is of the integer data type and is used to capture

saturation value of East West Road. This value will be used in

Webster calculations.It is declared as private and is initialized to 0.

 Method definitions (Application Class)

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 38/71

Name Description

main This is a main method of the program which kicks off the

program execution.

 Method definitions (Parse Data)

Name Description

parseFile This is a private method called Application class. With

List<InputData> return type, this allows fetching data from

inputData.txt file and preparing inputData objects

corresponding to each row.

 Method definitions (InputData Class)

This class contains methods in the form of getters and setters for all its attributes. This facilitates

the fetching and setting of data into the inputData object.

Count of Vehicles/Emergency Vehicle at intersection:

The following UML diagram depicts the classes that count the number of vehicles arriving and

departing at the interaction traffic lights. ‘VehicleCounter’ of each direction implements the

‘VehicleCounterIfc’ interface. Boolean input from the inductive loop detectors placed a specific

distance from traffic light and on the traffic, light send their input to VehicleCounter. Based on

these sensor data, the VehicleCounter for each direction sends the exact number of vehicles present

at a round. EmergencyVehiclePolling is the class that detects the presence of emergency vehicles

at the intersection. This class has attributes for inputs from sensors in the four directions; getters

and setters are used to access these class attributes.

Software Design (CSE 564) Cyber Physical Traffic Control System

39

Interface Definition

Name Description

VehicleCounterIfc Interface to be implemented by VehicleCounter class.

Method Definition

getCount Method to implemented by VehicleCounter classes

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 40/71

Class Definition

Name Description

VehicleCounter The 'VehicleCounter' of each direction implements the

‘VehicleCounterIfc’ interface. This class has attributes for inputs from

sensors in the four directions; getters and setters are used to access these

class attributes.

Attribute Definition

incomingVehicle The attribute is of the integer data type and is used to capture the

number of vehicles approaching the traffic light. This is marked as a

private variable.

outgoingVehicle The attribute is of the integer data type and is used to capture the

number of vehicles departing the intersection. This is marked as a

private variable.

Method Definition

getCount The method returns the number of vehicles that are waiting to cross the

intersection. It returns an integer value (difference between incoming

and outgoing vehicles).

VehicleCounter Constructor to initialize the class. Takes the integer values number of

incoming vehicle and outgoing vehicles are parameters.

Class Definition

Name Description

EmergencyVehiclePolling Class that detects the presence of emergency vehicles at the intersection.

Attribute Definition

Software Design (CSE 564) Cyber Physical Traffic Control System

41

isNorthEmergency The attribute is of the boolean data type and is used to detect presence

of emergency vehicles from the North direction. This is marked as a

private variable.

isSouthEmergency The attribute is of the boolean data type and is used to detect presence

of emergency vehicles from the South direction. This is marked as a

private variable.

isEastEmergency The attribute is of the boolean data type and is used to detect presence

of emergency vehicles from the East direction. This is marked as a

private variable.

isWestEmergency The attribute is of the boolean data type and is used to detect presence

of emergency vehicles from the West direction. This is marked as a

private variable.

Method Definition

EmergencyVehiclePolling Constructor to initialize the class. Takes object of InputData class as

argument.

isAnyEmergency Method checks if any of the boolean attributes are true, if true, it turns a

String value of the direction. Return type is String.

Determine Direction:

The provided class diagram is a subset that concentrates on the capability of summing up the

vehicles from all directions. Based on the last execution, the count of vehicles, and the

changeSignal flag, it determines the next direction that should have a green time. The count of

vehicles is the driving force to identify directions needing green time.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 42/71

Software Design (CSE 564) Cyber Physical Traffic Control System

43

Class Definition

Name Description

DetermineDirection The DetermineDirection class is responsible for determining the direction

for the next green signal based on the count of vehicles in each direction

and the last direction to have a green signal.

Attribute Definition

northCount The attribute is of the integer data type and is used to capture count of

vehicles from the north. This is marked as a private variable.

southCount The attribute is of the integer data type and is used to capture counts of

vehicles from the south. This is marked as a private variable.

eastCount The attribute is of the integer data type and is used to capture count of

vehicles from the east. This is marked as a private variable.

westCount The attribute is of the integer data type and is used to capture counts of

vehicles from the west. This is marked as a private variable.

lastExecution The lastExecution flag ensures that the side having lesser traffic too gets

smaller green time in round robin fashion. This attribute is of the String

data type and marked as private.

changeSignal The changeSignal flag is a feedback flag which is used to hold on further

rounds till the last determined greentime is elapsed.

Method Definition

DetermineDirection(int

northCount, int southCount, int

eastCount, int westCount, String

lastExecution,

 boolean

changeSignal)

This is a constructor which assigns the value for all the variables when

an object of this class is created.

determineCountAndDirection():

Node

This method, determineCountAndDirection(), which uses the instance

variables to calculate the primary and secondary counts of vehicles and

the direction in which the vehicle should proceed. The method creates a

new Node object and sets its attributes based on the calculations.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 44/71

getters and setters Getters and Setters methods are utility methods which are used to set

and fetch values to/from Node class.

Class Definition

Name Description

Node The Node class is used as a container for all the parameters returned by

an instance of DetermineDirection. This is considered good practice as it

allows all the returned elements to be consolidated in a single instance

before being returned.

Attribute Definition

direction The attribute is of the String data type and is used to capture the

determined direction according to the round robin algorithm. This is

marked as a private variable.

countPrimary The attribute is of the integer data type and is used to capture counts of

vehicles in primary roads. Primary road is one which will be going to

get green time. This is marked as a private variable.

countSecondary The attribute is of the integer data type and is used to capture counts of

vehicles in secondary roads. Primary road is one which will be going to

get green time. This is marked as a private variable.

lastExecution The attribute is of the String data type and is used to capture the

direction which got green time in the last iteration/round. This is

marked as a private variable.

changeSignal The changeSignal flag is a feedback flag which is used to hold on further

rounds till the last determined greentime is elapsed.

Method Definition

getters and setters Getters and Setters methods are utility methods which are used to set

and fetch values to/from Node class.

Software Design (CSE 564) Cyber Physical Traffic Control System

45

Webster Algorithm:

The below UML class diagram consists of the classes which calculate the green time required for

a particular direction by performing Webster’s algorithm for the current intersection. This

algorithm uses the values like road dimensions, number of vehicles traveling from one direction

per hour, ratio between the opposite direction vehicles etc.

Class Definition

Name Description

CriticalFlow This class is used to fetch all the values required for the calculation of

the webster’s algorithm. It takes the values of the saturationFlow for all

the directions and determines the criticalFlow for them. This class

consists of the getters and setters which are used for manipulating the

data.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 46/71

Attribute Definition

countPrimaryRoad This attribute has the integer value which represents the number of

vehicles present in the direction which is going to be changed to green.

countSecondaryRoad This attribute has the integer value which represents the number of

vehicles present in the direction perpendicular to the direction which is

going to be changed to green.

direction This attribute has the string value which represents the direction which

has to be changed. This helps in storage for determining direction.

saturationNS This attribute has the integer value which represents the number of

vehicles flowing in the north-south per hour.

saturationEW This attribute has the integer value which represents the number of

vehicles flowing in the east-west per hour.

Method Definition

CriticalFlow(countPrimaryRoad

: Integer, countSecondaryRoad,

direction : String, saturationNS :

Integer, saturationEW : Integer)

This is a constructor which assigns the value for all the variables when

an object of this class is created.

getCriticalFlow(): Map<String,

Double>

This method makes use of the vehicle count in all the directions, takes

the flow of vehicles per hour in all the directions and determines the

criticalFlow values for both the directions.

Class Definition

Name Description

Webster This class is used to perform calculation of the webster’s algorithm.

This class determines the value of the greenTime by considering all the

variables with respect to the intersection and flow of the traffic.

Attribute Definition

criticalFlowNS This attribute has the double value which represents the critical flow

ratio at a phase is the ratio between the observed volume of flow to the

Software Design (CSE 564) Cyber Physical Traffic Control System

47

saturation flow occurring at all the phases of an intersection at north

south.

criticalFlowEW This attribute has the double value which represents the critical flow

ratio at a phase is the ratio between the observed volume of flow to the

saturation flow occurring at all the phases of an intersection at east-

west.

direction This attribute has the string value which represents the direction which

must be changed. This helps in storage for determining direction.

lostTime This attribute has the integer value which represents lost time at a phase

is usually taken as 2 seconds

allRed This attribute has the integer value which represents all red time is

usually taken as zero

OCL This attribute is of double value which represents the optimum cycle

length is also taken as the total cycle time for a signal system

ya This attribute is of double value which represents the critical flow ratio

for primary roads.

L This attribute is of double value which represents lost time including all

red time.

Method Definition

Webster (criticalFlowNS :

Double, criticalFlowEW :

Double, direction : String)

This is a constructor which assigns the value for all the variables when

an object of this class is created.

findGreenTime(): Integer This method makes use of the vehicle count in all the directions, takes

the flow of vehicles per hour in all the directions and determines the

greenTime for the signal.

Changing Light Signal:

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 48/71

The below UML class diagram consists of the classes which take the greenTime and change the

output of the traffic signal depending upon the emergency and direction which needs to be changed

to green.

Software Design (CSE 564) Cyber Physical Traffic Control System

49

Class Definition

Name Description

DataProcessingController This class is used to determine whether there is a need to change the

signal or not. This change signal is only sent when the greenTime

counter variable is changed to 0.

Attribute Definition

greenTime This attribute has the integer value which represents the number of

seconds a signal is turned to green.

counter This attribute has the integer value which represents the number of

seconds remaining for the signal to be changed.

direction This attribute has the string value which represents the direction which

has to be changed. This helps in storage for determining direction.

emergency This attribute has the string value which represents the emergency

vehicle’s presence in a particular direction.

Method Definition

DataProcessingController(green

Time : Integer, direction :

String, emergency : String)

This is a constructor which assigns the value for all the variables when

an object of this class is created.

calculateChangeSignal():

Map<String, Boolean>

This method makes a call to the LightSignalController and tracks the

value for the last execution by storing the values in the map.

Class Definition

Name Description

LightSignalController This class is used to determine which signal to be turned green. It

checks for the current signal, verifies for the presence of any emergency

vehicle.

Attribute Definition

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 50/71

direction This attribute has the string value which represents the direction which

has to be changed. This helps in storage for determining direction.

emergency This attribute has the string value which represents the emergency

vehicle’s presence in a particular direction.

isEmergency This attribute is used to store the value of emergency and maintain this

emergency value for further rounds until the time completes.

counter This attribute has the integer value which represents the number of

seconds the signal remains unchanged.

dir This attribute has the string value which represents the direction which

has to be changed. This helps in storage for determining direction each

of the rounds has it is dependent on the emergency vehicles and rounds

happening.

NSgsLatch This attribute has the boolean value which represents whether this

signal is enabled or not. This is true when the north-south signal is

green else false.

EWgsLatch This attribute has the boolean value which represents whether this

signal is enabled or not. This is true when the east-west signal is green

else false.

NSrsLatch This attribute has the boolean value which represents whether this

signal is enabled or not. This is true when the north-south signal is red

else false.

EWrsLatch This attribute has the boolean value which represents whether this

signal is enabled or not. This is true when the east-west signal is red else

false.

NSysLatch This attribute has the boolean value which represents whether this

signal is enabled or not. This is true when the north-south signal is

yellow, else false.

EWysLatch This attribute has the boolean value which represents whether this

signal is enabled or not. This is true when the east-west signal is yellow,

else false.

Method Definition

LightSignalController(direction

: String, emergency : String)

This is a constructor which assigns the value for all the variables when

an object of this class is created.

Software Design (CSE 564) Cyber Physical Traffic Control System

51

determineSignal(): Map<String,

Boolean>

This method determines which signal to be turned green by using the

value for the last execution by storing the values in the map.

3. IMPLEMENTATION

Module Name Type Description Size

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 52/71

(LoC)

Main Application Class The software application begins execution from

this class.

132

Main DataProcessingCont

roller

Class Manages the light signal controller. Calls the

Webster algorithm to determine maximum green

light duration, presence of emergency vehicles.

60

Main DetermineDirection Class Identifies the direction which has the most number

of vehicles. Returns the number of vehicles and the

direction. (that has the most number of vehicles.)

109

Main VehicleCounter Class One class for each direction(ie, North-bound,

South-bound, East-bound, West-bound). Inductive

loop sensors give their output to this class.

36

Main LightSignalControll

er

Class Object that represents the traffic light controller

hardware,data processing controller outputs this

class’s object.

81

Main Constants Interfac

e

Constant attributes specified. 35

Main VehicleCounterfc Interfac

e

Interface for vehicle count-get method. This

interface is implemented by VehicleCounter.

6

Main Node Class Stores the current state of the system. Current state

includes the number of vehicles, direction which

has green signal in the last round, current direction

having green signal, and, a boolean value

indicating if the current round is a signal change.

55

Main inputData txt Text file to simulate inputs from the sensors on the

road. Each row represents the number of incoming

and outgoing vehicles, and also the presence of

emergency vehicles.

11

Input ParseData Class To simulate the sensors, data is stored in a text file,

ParseData reads and passes this data to

InputData.java.

48

Software Design (CSE 564) Cyber Physical Traffic Control System

53

Input InputData Class

During each round, this class’s object is passed to

Application.java. Class has attribute all parameters

(i.e. vehicles waiting at each intersection, presence

of emergency vehicles, etc.).

Application class uses this object for operation.

137

Emergency EmergencyVehicleP

olling

Class Indicates the presence of emergency vehicles.

Returns the direction in which the emergency

vehicle is detected.

67

Websters CriticalFlow Class Calculates the green signal time based on Webster's

algorithm. Returns the direction to which green

light must be turned on.

85

Websters Webster Class Executes the Websters algorithm based on the input

parameters, returns the green signal duration.

51

4. EXPERIMENTS AND RESULTS

To conduct our experiments and demos, we treated each row in the "inputData.txt" file as a

single round.

During the normal scenario,

It provides outputs for the normal operation, configuration, and other things consistent with

the project topic [5].

Experiment and Results

1. Normal Scenario (no Emergency vehicles approaching).

The system is said to be operating in a normal mode when there are no emergency vehicles

in the intersection. During this mode, based on the number of vehicles in both directions

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 54/71

(north-south and east-west), the system, according to Webster’s algorithm, calculates the

optimal green for each direction-pair.

The following screenshots show the system in normal mode with green light alternating

between the two directions.

Software Design (CSE 564) Cyber Physical Traffic Control System

55

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 56/71

2. Emergency vehicle approaching red light.

The following screenshots depict the system behavior when an emergency vehicle is

approaching the intersection, and when it is facing a red traffic light. In such a condition,

the controller switches the current direction to red and then changes the traffic light of the

emergency vehicle to green. Here, we are assuming that people on the road will make way

for the emergency vehicle to pass the intersection, because of this assumption the system

shows green for 20 seconds. After 20 seconds, the system resumes normal operation.

Software Design (CSE 564) Cyber Physical Traffic Control System

57

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 58/71

3. Emergency vehicles approaching green light.

When an emergency vehicle approaches an intersection and when its direction is having a

green light, the controller does not change the light for 20 seconds. Here it is also assumed

that other civilian vehicles would facilitate the emergency vehicle by giving its right of

way.

Software Design (CSE 564) Cyber Physical Traffic Control System

59

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 60/71

4. Traffic only in one direction

If no vehicles approach an interaction, that direction will not have a green light. This will

ensure that the vehicles in other directions are able to move freely.

The following screenshots show a scenario where there are no vehicles approaching in the

north or south direction. The controller can be seen to be outputting green light only to

east-west bound lights.

Software Design (CSE 564) Cyber Physical Traffic Control System

61

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 62/71

5. FRAMEWORKS AND SOFTWARE TOOLS

Software Purpose

Astah For UML Diagrams.

Draw.io Class diagrams.

Eclipse, IntelliJ IDEs for Java coding and validation.

Git Source code version control.

Apache Maven For source code libraries.

Software Design (CSE 564) Cyber Physical Traffic Control System

63

6. CONCLUSIONS

Cyber-Physical Traffic Control System is our first software project that involved a very close

relationship with hardware components. By actively taking part in each of the development

processes which started with identifying the requirements of the system to deploying the system

using software simulation, we were able to have a deep understanding of synchronous reactive

components. The behavior of components based on rounds was a new concept for us, however, we

were quick to grasp.

In conclusion, the development of a traffic signal control cyber physical system is an important

step towards improving traffic efficiency and safety in modern cities. Our system integrates real-

time data from multiple sensors and uses advanced algorithms to optimize traffic flow and reduce

congestion. Through extensive testing and evaluation, we have demonstrated the effectiveness of

our system in improving traffic flow and reducing travel time. We believe that our system has the

potential to make a significant impact on the way traffic is managed in urban areas and we are

excited to continue exploring new ways to optimize traffic control using cyber physical systems.

As a team, we learned that using SRC for software design, particularly for safety-critical

applications, is beneficial. Conducting a dry run of the state machine and transitioning to a semi-

formal design approach helps identify potential loopholes in the application, which could

otherwise lead to disastrous consequences. Furthermore, this approach provides a useful template

or starting point for designing mission-critical applications.

Evaluation - Team

The objective of this project was to design and develop an innovative traffic control system that

can adapt to the traffic flow and minimize congestion at intersections. The team was assigned to

carry out the project and was evaluated on various aspects, including project management, team

collaboration, technical expertise, and overall project success.

Project Management:

The team demonstrated excellent project management skills throughout the project. They followed

a well-defined project plan, which included the scope, timeline, milestones, and deliverables. The

team regularly updated the project status and communicated effectively with the professors and

TA. The team ensured that the project was completed on time even though our team was first to

do presentations.

Team Collaboration:

Though located at different parts of the city, the team exhibited outstanding collaboration skills,

which played a critical role in the project's success. They worked cohesively and efficiently, and

every member of the team contributed to the project's success. The team members were respectful

of each other's opinions and worked together to resolve any conflicts.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 64/71

Technical Expertise:

The team possessed excellent technical expertise, which was evident in the quality of the system

they developed. They demonstrated a thorough understanding of synchronous reactive

components and applied their knowledge to design and implement an effective adaptive light

signal controller. The team was proficient at implementing the concepts of rounds, synchronicity

learnt during the course.

Overall Project Success:

The team's hard work, dedication, and technical expertise resulted in a successful project outcome.

The adaptive light signal controller that the team developed was effective in reducing traffic

congestion and improving traffic flow at intersections.

Evaluation - Self - Jacob Jose

I was able to get a good understanding of how hardware components interact with software. The

various assignments in the course helped me attain a very thorough grasp of synchronous-reactive

components. I would also like to say that by doing the project towards the end of all assignments

greatly helped me implement designs in the correct way. Overall, it was a rewarding experience.

Evaluation - Self - Sai Varun Vaka

I am very proud of my work on this project, where I designed a part of the synchronous reactive

component, UML, and implementation for a cyber physical traffic control system. I believe that

my work on this project was highly effective, as I was able to design a system that integrated

physical and cyber components to optimize traffic flow and reduce congestion in real-time. One

of my key strengths in this project was my ability to design the system using UML. I was able to

create clear and concise diagrams that accurately represented the system architecture and design.

Additionally, my work on the synchronous reactive component was highly effective. By designing

a system that could dynamically adjust the timing of traffic signals based on real-time traffic data,

I was able to identify feedback loop for the application. I believe that my work on this component

was critical to the success of the project, as it was a key part of the overall system design. In terms

of areas for improvement, I believe that I could have done more to document my work and

communicate my progress with the rest of the team. While I was able to design and implement the

system effectively, I could have done more to keep the team updated on my progress and provide

clear documentation of my work.

Software Design (CSE 564) Cyber Physical Traffic Control System

65

Evaluation - Self - Kanav Sharma

Since the project was assigned after the completion of the first chapter, I had a strong foundation

to understand the connection between the concepts of Synchronous Reactive Components (SRC)

taught in the class and the development of the project. Initially, I identified that our project was a

Cyber-Physical System (CPS) and determined its boundaries with the physical environment. To

simplify the project, I divided it into smaller subproblems and identified the appropriate software

reactive components. After creating individual SRCs, I utilized the composite SRC concepts that

I learned in the course to merge them and give shape to the project.

Conducting a dry run of the state machine was beneficial for me to reinforce my understanding of

the concepts learned and to address any issues encountered during the process. I applied the lessons

learned in transitioning from formal to informal language to develop UML class diagrams,

establish relationships between the classes, and finalize the multiplicity. Additionally, I gained

insights into the concept of asynchronicity and learned how to implement threading to achieve a

particular goal, but SRC was sufficient to accomplish the same tasks.

My understanding of synchronous reactive components was excellent, and I applied my technical

expertise to implement the adaptive light signal controller system successfully. I efficiently

identified and resolved technical challenges that arose during the project. As the team leader, I

ensured that everyone had a solid understanding of the concepts learned in class and during

assignments, and I fostered a collaborative team environment. Managing the project timeline was

a key responsibility, and I carefully considered various factors such as assignment due dates,

presentation deadlines, and remaining work.

I not only served as a team lead but also dedicated myself as a team member who was receptive to

feedback and suggestions from the team.

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 66/71

References

Additional references should be included as needed.

[1] R. Alur, (2015), Principles of Cyber-Physical Systems, MIT Press.

[2] G. Booch, et al., (2007), Object Oriented Analysis and Design (OOAD), 3rd Ed., Addison

Wesley.

[3] Java Platform, Standard Edition (Java SE), (2019),

https://www.oracle.com/java/technologies/java-se.html.

[4] OMG 2012. “Unified Modeling Language version 2.5.1”.

https://www.omg.org/spec/UML/2.5.1/.

[5] “Traffic Signal Design | Webster’s Formula for Optimum Cycle Length.” Traffic Signal

Design | Webster’s Formula for Optimum Cycle Length, 17 July 2022,

www.apsed.in/post/traffic-signal-design-webster-s-formula-for-optimum-cycle-length.

[6] Ren Caigui, "Research and design of signal phase scheme for different traffic flow and

traffic volume," 2011 International Conference on Remote Sensing, Environment and

Transportation Engineering, Nanjing, China, 2011, pp. 1473-1475, doi:

10.1109/RSETE.2011.5964562.

[7] Y. Quan, L. Jin-guang, L. Pei-hua, R. Jian and L. Xiao-ming, "Dynamic Optimization

Project Study between the Traffic Organization and the Traffic Signal Control of Urban

Traffic," 2009 WRI World Congress on Computer Science and Information Engineering,

Los Angeles, CA, USA, 2009, pp. 182-186, doi: 10.1109/CSIE.2009.63.

[8] C. Wei, W. Dianhai, C. Yuguang, Y. Manrong and L. Xuemin, "Research on Signal Control

Methods of Traffic Bottlenecks in City Road Network," 2009 WRI Global Congress on

Intelligent Systems, Xiamen, China, 2009, pp. 450-454, doi: 10.1109/GCIS.2009.416.

https://www.oracle.com/java/technologies/java-se.html
https://www.omg.org/spec/UML/2.5.1/

Software Design (CSE 564) Cyber Physical Traffic Control System

67

7. APPENDICES

Sample Data:

1. Round 1:

10,0,10,0,20,0,20,0,1000,1250,false,false,false,false

2. 30,0,30,0,40,20,40,20,1000,1250,false,false,false,false

3. 10,30,20,30,55,0,65,0,1000,1250,false,false,false,false

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 68/71

4. 20,0,30,0,20,55,20,65,1000,1250,true,false,false,false

5. 0,20,0,30,75,0,65,0,1000,1250,false,false,false,false

Software Design (CSE 564) Cyber Physical Traffic Control System

69

6. 0,0,0,0,0,50,0,50,1000,1250,false,false,true,false

7. 0,0,0,0,0,30,0,20,1000,1250,false,false,false,false

8. 0,20,0,30,0,0,0,0,1000,1250,false,false,false,false

Kanav Sharma, Jacob Jose, Sai Varun Vaka

CSE 564 – Spring 2023 70/71

9. 0,0,0,0,0,55,0,55,1000,1250,false,false,false,false

10. 0,0,0,0,0,0,0,0,1000,1250,false,false,false,false

Software Design (CSE 564) Cyber Physical Traffic Control System

71

11. 1,0,0,0,0,0,0,0,1000,1250,false,false,false,false

